

Desulfonylative Methenylation of β -Keto Sulfones

Ganesh Pandey* and Janakiram Vaitla

Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, SGPGIMS Campus Lucknow 226014, India

Supporting Information

ABSTRACT: A one-step strategy for the synthesis of α -methenyl ketones from β -keto sufones is reported. Success of the methodology is elaborated for the synthesis of chromanones and isoflavanones in one-step.

D onor-Acceptor (D-A) cyclopropanes serve as versatile building blocks in diverse chemical transformations, including cycloaddition, ring opening, and rearrangement reactions in organic synthesis.^{1,2} It is established that D-A cyclopropanes 1 undergoes selective "a" bond cleavage (Scheme 1) due to polarization by the push-pull effect of

donor and acceptor groups. In fact, this property has been very well exploited to synthesize enol ether 2a by the selective "a" bond dissociation of 1a.^{3a}

Similarly, Davies et al. have also used this reaction to prepare γ -keto sulfone **2b** from the dissociation of **1b**, generated by

cyclopropantion reaction of rhodium carbenoid with cyclopentadiene. $^{\rm 3b}$

With this information in hand, we sought to prepare biologically active tropane alkaloids 7 by the cyclopropanation of the enolate of the optically pure 5^{4a} (0.1 M, CH₂Cl₂, 0 °C) using Furukawa-modified Simmons–Smith reagent [(Et₂Zn, (2 equiv), CH₂I₂ (2 equiv)], which gave a mixture of 6 and 7 (3:1) in 54% yield (Table 1, entry 2).⁵

Table 1. Optimization of Regioselective Bond Fragmentation of D-A Cyclopropane Intermediate

Boc	SO₂Ph	Et ₂ Zn CH ₂ I ₂	Boc N H B	SO ₂ Ph
no.	equiv ^a	temp (°C)	time (min)	6:7 ^b
1	2	-78	120	no reaction ^c
2	2	0	60	30:12
3	4	-78	120	no reaction ^c
4	4	0	45	50:22
5	4	0-25	30	72:0
6	4	30	5	20:0
7	6	0-25	10	48:0

^{*a*}Equivalents of Et₂Zn and CH_2I_2 to 1 equiv of 5. ^{*b*}Isolated yields. ^{*c*}Starting material recovered.

The formation of α -methenyl ketone **6**, however, was unexpected in this reaction. To obtain 7 as the major product, several experiments (Table 1) were performed; however, this remained elusive. It was surprising to note that reaction at 0–25 °C produced exclusively **6** in 72% isolated yield (Table 1, entry 5). Although this result was disappointing, we visualized its application in the preparation of the α -methenyl ketones from β -keto sulfones in one step. α -Methenyl ketones are important starting materials in cycloaddition,⁶ Michael

Received: August 26, 2015 Published: September 17, 2015

Organic Letters

addition,⁷ Morita–Baylis–Hillman reaction,⁸ Nazarov cyclization,⁹ and several catalytic transformation reactions.¹⁰

We report herein the successful transformation of a series of β -keto sulfones to α -methenyl ketones in one step by the reaction of diethylzinc in the presence of CH₂I₂.

Initially, to demonstrate this transformation, reaction of 2phenylsulfonylacetophenone (3a) [4 equiv of Et_2Zn , 4 equiv of CH_2I_2 , and 1 equiv of 3a in 0.1 M CH_2Cl_2 at 0 °C] was performed, and acrylophenone (4a) (Figure 1) was obtained in

Figure 1. Example of the desulfonylative methenylation of β -keto sufones. (a) All of the reactions were carried out in the presence of 2 mmol of Et₂Zn and CH₂I₂ to 0.5 mmol of 3. (b) Isolated yields.

77% yield. This reaction can be used for gram-scale synthesis of α -methenyl ketones¹¹ with consistent yields. Usually, in Simmons–Smith reactions alkenes are starting materials for cyclopropanation;¹² however, in this reaction, formation of activated alkenes is observed. It may be noted that this is the first report of this kind where β -keto sulfones are easily transformed into α -methylene ketones. Previous reports show the transformation of β -keto sulfones to alkynyl,¹³ alkenyl,¹⁴ carbonyl,¹⁵ and dicarbonyl¹⁶ functionalities.

The generality of the reaction was established by carrying it out with a variety of β -keto sufones, and the results are shown in Figure 1. It is observed that all aromatic, heteroaromatic, and aliphatic β -keto sufones provided the corresponding α -methylene ketones in good yields (59–92%).

From Figure 1, it is clear that aromatic β -keto sufones provided higher yields compared to aliphatic β -keto sufones. Furthermore, it was noticed that aromatic β -keto sufones bearing electron-withdrawing substituents 41 gave slightly higher yields than the electron-donating groups. This protocol is safely used for the transformation of enantiomerically pure 40, containing an acid-labile protecting group, without compromising the enantiomeric purity. Notably, α -sulfonyl aldehydes did not afford the desired acrolein derivatives under the optimized reaction conditions.

It may be worth emphasizing that, generally, α -methenyl ketones are prepared in three steps by a Mannich reaction– alkylation–elimination sequence with Eschenmoser's salt (dimethylmethylideneammonium iodide)¹⁷ or a transiently formed methyleneammonium salt.¹⁸ Although these approaches are elegant, regioselective α -methenylation of aliphatic ketones is a major limitation (Scheme 2).¹⁹ For example, α -

methenylation of **8** is known to afford a 1:1 mixture of **4t** and **4t**' in 63% yield.¹⁹ However, in our case, easily accessible β -keto sufone²⁰ **3t** under the present reaction conditions afforded **4t** exclusively. Furthermore, traditional α -methenylation of **9** proceeds selectively at a benzylic position to afford **4u**';^{19a} however, in the present case **4u** was formed in 73% yield.

Further application of this reaction was carried out by onestep transformation of **10a** to chromanone (**11a**) and **10b** to isoflavanones (**11b**) (Scheme 3) in moderate yields (54–58%). These compounds are shown to display a range of biological activity and have been shown to act as immunosuppressive agents,²¹ possess antibacterial²² and anticancer activity,²³ and act as α -glucosidase inhibitors.²⁴ Furthermore, **10c** is transformed to **11c** in two steps,²⁵ which is a precursor of bioactive sophorapterocarpan A.²⁶ Our attempt to synthesize dihydroquinolne **12** by identical reaction of **10d**, however, did not succeed.

On the basis of the above observations, a plausible reaction mechanism has been shown in Scheme 4.

It seems that reaction of 3 by zinc carbenoid or diethylzinc leads to 13, which undergoes Simmons–Smith reaction to provide D–A cyclopropane 1c. Subsequently, the leaving group ability²⁸ of the phenylsulfone group^{4b} of activated D–A cyclopropane undergoes fragmentation to generate α , β -unsaturated ketone 4. In order to support the mechanism, we have also analyzed the crude reaction mixture of 5 by mass

Scheme 3. Synthetic Applications of Desulfonylative Methenylation of β -Keto Sufones

Scheme 4. Plausible Mechanism for the Formation of α -Methenyl Ketones

spectrometry, which indicated the formation of $PhSO_2H$ by showing a mass of 164.9972 (M + Na⁺). An alternative mechanism can also be possible via deprotonation of the active methelene proton by organozinc reagent to produce 13' followed by fragmentation leading to the formation 4. Reported experimental⁵ and mechanistic investigations²⁷ for the zinc carbenoid insertion step further support both possibile proposed mechanisms.

In summary, a convenient protocol for the desulfonylative methenyaltion of β -keto sufones is described. The key feature of the method involves regioselective C–C bond fragmentation²⁹ of D–A cyclopropane followed by desulfonylation to give α -methenyl ketones. Further application of this method is demonstrated by preparing chromanones and isoflavanones in one step.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.5b02455.

Experimental procedures, compound characterization data, copies of NMR spectra for all compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: gp.pandey@cbmr.res.in.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank DST, New Delhi for financial support, and J.V. thanks CSIR, New Delhi, for the award of a research fellowship.

REFERENCES

 For relevant reviews, see: (a) Reissig, H. U.; Zimmer, R. Chem. Rev. 2003, 103, 1151. (b) de Simone, F.; Waser, J. Synthesis 2009, 2009, 3353. (c) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321.
 (d) Campbell, M. J.; Johnson, J. S.; Parsons, A. T.; Pohlhaus, P. D.; Sanders, S. D. J. Org. Chem. 2010, 75, 6317. (e) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051. (f) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504. (g) Mel'nikov, M. Ya.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V. Mendeleev Commun. 2011, 21, 293. (h) Novikov, R. A.; Tomilov, Yu. V. Mendeleev Commun. 2015, 25, 1. (i) de Nanteuil, F.; de Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912. (j) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804.

(2) Selected recent examples of D-A cyclopropane reactions: (a) Braun, C. M.; Congdon, E. A.; Nolin, K. A. J. Org. Chem. 2015, 80, 1979. (b) Rakhmankulov, E. R.; Ivanov, K. L.; Budynina, E. M.; Ivanova, O. A.; Chagarovskiy, A. O.; Skvortsov, D. A.; Latyshev, G. V.; Trushkov, I. V.; Melnikov, M. Ya. Org. Lett. 2015, 17, 770. (c) Kumar Pandey, A.; Ghosh, A.; Banerjee, P. Eur. J. Org. Chem. 2015, 2015, 2517. (d) Rivero, A. R.; Fernandez, I.; Ramirez de Arellano, C.; Sierra, M. A. J. Org. Chem. 2015, 80, 1207. (e) Zhu, J.; Liang, Y.; Wang, L.; Zheng, Z.-B.; Houk, K. N.; Tang, Y. J. Am. Chem. Soc. 2014, 136, 6900. (f) Zhang, H.-H.; Luo, Y.-C.; Wang, H.-P.; Chen, W.; Xu, P.-F. Org. Lett. 2014, 16, 4896. (g) Racine, S.; de Nanteuil, F.; Serrano, E.; Waser, J. Angew. Chem., Int. Ed. 2014, 53, 8484. (h) Ghorai, M. K.; Talukdar, R.; Tiwari, D. P. Org. Lett. 2014, 16, 2204. (i) Wang, Z.; Ren, J.; Wang, Z. Org. Lett. 2013, 15, 5682. (j) Ivanov, K. L.; Villemson, E. V.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V.; Melnikov, M. Y. Chem. - Eur. J. 2015, 21, 4975. (k) Garve, L. K. B.; Barkawitz, P.; Jones, P. G.; Werz, D. B. Org. Lett. 2014, 16, 5804.

(3) (a) Wienand, A.; Reissig, H.-U. *Tetrahedron Lett.* **1988**, *29*, 2315.
(b) Davies, H. M. L.; Houser, J. H.; Thornley, C. J. Org. Chem. **1995**, 60, 7529.

(4) (a) Pandey, G.; Tiwari, K. N.; Puranik, V. G. Org. Lett. 2008, 10, 3611. (b) Pandey, G.; Janakiram, V. Chem. - Eur. J. 2015, 21, 13120.

(5) (a) Brogan, J. B.; Zercher, C. K. J. Org. Chem. 1997, 62, 6444.
(b) Hilgenkamp, R.; Zercher, C. K. Tetrahedron 2001, 57, 8793.

(c) Verbicky, C. A.; Zercher, C. K. J. Org. Chem. 2000, 65, 5615.

(6) (a) Erkkilä, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416. (b) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007.

(7) For selected examples, see: (a) Evans, D. A.; Ratz, A. M.; Huff, B. E.; Sheppard, G. S. J. Am. Chem. Soc. 1995, 117, 3448. (b) Trost, B. M.; Florez, J.; Jebaratnam, D. J. J. Am. Chem. Soc. 1987, 109, 613.
(c) Mann, R. K.; Parsons, J. G.; Rizzacasa, M. A. J. Chem. Soc., Perkin Trans. 1 1998, 1283.

(8) For recent reviews, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811. (b) Masson, G.; Housseman, C.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4614.
(c) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511. (d) Shi, Y. L.; Shi, M. Eur. J. Org. Chem. 2007, 2007, 2905. (e) France, S.; Guerin, D. J.; Lectka, T. Chem. Rev. 2003, 103, 2985.

(9) For reviews, see: (a) Habermas, K. L.; Denmark, S. E.; Jones, T. K. Org. React. **1994**, 45, 1. (b) Santelli-Rouvier, C.; Santelli, M. Synthesis **1983**, 1983, 429.

(10) (a) Li, P.; Wen, S.; Yu, F.; Liu, Q.; Li, W.; Wang, Y.; Liang, X.;
Ye, J. Org. Lett. 2009, 11, 753. (b) Northrup, A. B.; MacMillan, D. W.
E. J. Am. Chem. Soc. 2002, 124, 2458. (c) Ishihara, K.; Nakano, K. J.
Am. Chem. Soc. 2005, 127, 10504. (d) Yang, J. W.; Hechavarria
Fonseca, M. T.; Vignola, N.; List, B. Angew. Chem., Int. Ed. 2005, 44, 108.

(11) 2-Phenylsulfonylacetophenone (**3a**) (3.0 g) afforded 1.5 g of acrylophenone (**4a**) in 77% yield (see the Supporting Information).

(12) (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. *Chem. Rev.* **2003**, *103*, 977. (b) Pellissier, H. *Tetrahedron* **2008**, *64*, 7041.

(13) (a) Lythgoe, B.; Waterhouse, I. Tetrahedron Lett. **1978**, 19, 2625. (b) Lythgoe, B.; Waterhouse, I. J. Chem. Soc., Perkin Trans. 1 **1979**, 2429. (c) Bartlett, P. A.; Green, F. R., III; Rose, E. H. J. Am. Chem. Soc. **1978**, 100, 4852. (d) Ihara, M.; Suzuki, S.; Taniguchi, T.; Tokunaga, Y.; Fukumoto, K. Tetrahedron **1995**, 51, 9873.

(14) (a) Lugo, B. Synlett **1992**, 793. (b) Gamble, M. P.; Giblin, G. M. P.; Taylor, R. J. K. Synlett **1995**, 1995, 779.

(15) (a) Caricato, G.; Savoia, D. Synlett **1994**, 1994, 1015. (b) Pavri, N. P.; Trudell, M. L. Tetrahedron Lett. **1997**, 38, 7993. (c) Jones, D. N.; Maybury, M. W. J.; Swallow, S.; Tomkinson, N. C. O. Tetrahedron Lett. **1993**, 34, 8553. (d) Benedetti, F.; Berti, F.; Risaliti, A. Tetrahedron Lett. **1993**, 34, 6443. (e) Kato, M.; Watanabe, M.; Vogler, B.; Awen, B. Z.; Masuda, Y.; Tooyama, Y.; Yoshikoshi, A. J. Org. Chem. **1991**, 56, 7071. (f) Santhosh, K. C.; Balasubramanian, K. K. Tetrahedron Lett. **1991**, 32, 7727. (g) Hynes, J., Jr.; Overman, L. E.; Nasser, T.; Rucker, P. V. Tetrahedron Lett. **1998**, 39, 4647.

(16) Williams, D. R.; Robinson, L. A.; Amato, G. S.; Osterhout, M. H. J. Org. Chem. **1992**, *57*, 3740.

(17) Kinast, G.; Tietze, L.-F. Angew. Chem. 1976, 88, 261.

(18) (a) Erkkila, A.; Pihko, P. M. J. Org. Chem. 2006, 71, 2538.
(b) Erkkila, A.; Pihko, P. M. Eur. J. Org. Chem. 2007, 2007, 4205.

(19) (a) Lange, J. H. M.; Attali, A.; Wals, H. C.; Mulder, A.; Zilaout,

H.; Duursma, A.; Aken, H. H. M.; Vliet, B. J. Bioorg. Med. Chem. Lett.

2010, 20, 4992. (b) Shono, T.; Nishiguchi, I.; Komamura, T.; Sasaki, M. J. Am. Chem. Soc. **1979**, 101, 984.

(20) Markitanov, Y. M.; Timoshenko, V. M.; Shermolovich, Y. G. J. Sulfur Chem. 2014, 35, 188.

(21) Shou, Q.-Y.; Fu, R.-Z.; Tan, Q.; Shen, Z.-W. J. Agric. Food Chem. 2009, 57, 6712.

(22) Tanaka, H.; Hattori, H.; Oh-Uchi, T.; Sato, M.; Sako, M.; Tateishi, Y.; Rizwani, G. H. *Nat. Prod. Res.* **2009**, *23*, 1089.

(23) Chin, Y.-W.; Mdee, L. K.; Mbwambo, Z. H.; Mi, Q.; Chai, H.-B.; Cragg, G. M.; Swanson, S. M.; Kinghorn, A. D. J. Nat. Prod. 2006, 69, 1649.

(24) Valentova, M.; Marek, R.; Svajdlenka, E.; Kubinova, R.; Suchy, V. *Fitoterapia* **2011**, *82*, 272.

(25) Santoso, H.; Casana, M. I.; Donner, C. D. Org. Biomol. Chem. 2014, 12, 171.

(26) Ozaki, Y.; Mochida, K.; Kim, S.-W. J. Chem. Soc., Perkin Trans. 1 1989, 1219.

(27) Eger, W. A.; Zercher, C. K.; Williams, C. M. J. Org. Chem. 2010, 75, 7322.

(28) (a) Beslin, J.; Vialle, J. Tetrahedron 1980, 36, 1943. (b) Liu, C.-

H.; Wang, S.-H.; Ruszczycky, M. W.; Chen, H.; Li, K.; Murakami, K.; Liu, H.-W. *Org. Lett.* **2015**, *17*, 3342. (c) Kosobokov, M. D.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. *Org. Lett.* **2015**, *17*, 760.

(29) Halskov, K. S.; Kniep, F.; Lauridsen, V. H.; Iversen, E. H.; Donslund, B. S.; Jørgensen, K. A. J. Am. Chem. Soc. 2015, 137, 1685.